Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Course‐based undergraduate research experiences (CUREs) can be a powerful tool in broadening participation in undergraduate research. In this paper, we review the benefits of and barriers to undergraduate research experiences and explore how CUREs can mitigate some of those issues. As a part of the NSF‐supported Biological Collections in Ecology and Evolution Network (BCEENET) activities, a series of network meetings produced a set of recommendations to increase the accessibility of CUREs for all students at all institution types. We use BCEENET CUREs that focus on digitized natural history collections data to illustrate how leveraging adaptable open educational resources that use freely available data and analysis tools can increase accessibility of undergraduate research. We also discuss how inclusive networks of educators and research collaborators can support broadening CURE implementation.more » « less
-
Abstract Allopolyploids represent a new frontier in species discovery among embryophytes. Within mosses, allopolyploid discovery is challenged by low morphological complexity. The rapid expansion of sequencing approaches in addition to computational developments to identifying genome merger and whole-genome duplication using variation among nuclear loci representing homeologs has allowed for increased allopolyploid discovery among mosses. Here, we test a novel approach to phasing homeologs within loci and phasing loci across subgenomes, or subgenome assignment, called Homologizer, in the family Funariaceae. We confirm the intergeneric hybrid nature of Entosthodon hungaricus, and the allopolyploid origin of Physcomitrium eurystomum and one population of Physcomitrium collenchymatum. We also reveal that hybridization gave rise to Physcomitrium immersum, as well as to yet unrecognized lineages sharing the phenotype of Physcomitrium pyriforme and Physcomitrium sphaericum. Our findings demonstrate the utility of our approach when working with polyploid genomes, and its value in identifying progenitor species using target capture data.more » « less
-
High viral tolerance coupled with an extraordinary regulation of the immune response makes bats a great model to study host-pathogen evolution. Although many immune-related gene gains and losses have been previously reported in bats, important gene families such as antimicrobial peptides (AMPs) remain understudied. We built an exhaustive bioinformatic pipeline targeting the major gene families of defensins and cathelicidins to explore AMP diversity and analyze their evolution and distribution across six bat families. A combination of manual and automated procedures identified 29 AMP families across queried species, with α-, β-defensins, and cathelicidins representing around 10% of AMP diversity. Gene duplications were inferred in both α-defensins, which were absent in five species, and three β-defensin gene subfamilies, but cathelicidins did not show significant shifts in gene family size and were absent inAnoura caudiferand the pteropodids. Based on lineage-specific gains and losses, we propose diet and diet-related microbiome evolution may determine the evolution of α- and β-defensins gene families and subfamilies. These results highlight the importance of building species-specific libraries for genome annotation in non-model organisms and shed light on possible drivers responsible for the rapid evolution of AMPs. By focusing on these understudied defenses, we provide a robust framework for explaining bat responses to pathogens.more » « less
-
Abstract Organisms such as allopolyploids and F1 hybrids contain multiple distinct subgenomes, each potentially with its own evolutionary history. These organisms present a challenge for multilocus phylogenetic inference and other analyses since it is not apparent which gene copies from different loci are from the same subgenome and thus share an evolutionary history.Here we introduce homologizer, a flexible Bayesian approach that uses a phylogenetic framework to infer the phasing of gene copies across loci into their respective subgenomes.Through the use of simulation tests, we demonstrate that homologizer is robust to a wide range of factors, such as incomplete lineage sorting and the phylogenetic informativeness of loci. Furthermore, we establish the utility of homologizer on real data, by analysing a multilocus dataset consisting of nine diploids and 19 tetraploids from the fern family Cystopteridaceae.Finally, we describe how homologizer may potentially be used beyond its core phasing functionality to identify non‐homologous sequences, such as hidden paralogs or contaminants.more » « less
-
null (Ed.)PREMISE The successful application of universal targeted sequencing markers, such as those developed for the Angiosperms353 probe set, within populations could reduce or eliminate the need for specific marker development, while retaining the benefits of full-gene sequences in population-level analyses. However, whether the Angiosperms353 markers provide sufficient variation within species to calculate demographic parameters is untested. METHODS Using herbarium specimens from a 50-year-old floristic survey in Texas, we sequenced 95 samples from 24 species using the Angiosperms353 probe set. Our data workflow calls variants within species and prepares data for population genetic analysis using standard metrics. In our case study, gene recovery was affected by genomic library concentration only at low concentrations and displayed limited phylogenetic bias. RESULTS We identified over 1000 segregating variants with zero missing data for 92% of species and demonstrate that Angiosperms353 markers contain sufficient variation to estimate pairwise nucleotide diversity (π)—typically between 0.002 and 0.010, with most variation found in flanking non-coding regions. In a subset of variants that were filtered to reduce linkage, we uncovered high heterozygosity in many species, suggesting that denser sampling within species should permit estimation of gene flow and population dynamics. DISCUSSION Angiosperms353 should benefit conservation genetic studies by providing universal repeatable markers, low missing data, and haplotype information, while permitting inclusion of decades-old herbarium specimens.more » « less
-
Abstract— The genus Solidago represents a taxonomically challenging group due to its sheer number of species, putative hybridization, polyploidy, and shallow genetic divergence among species. Here we use a dataset obtained exclusively from herbarium specimens to evaluate the status of Solidago ulmifolia var. palmeri , a morphologically subtle taxon potentially confined to Alabama, Arkansas, Mississippi, and Missouri. A multivariate analysis of both discrete and continuous morphological data revealed no clear distinction between S. ulmifolia var. palmeri and Solidago ulmifolia var. ulmifolia . Solidago ulmifolia var. palmeri ’s status was also assessed with a phylogenomic and SNP clustering analysis of data generated with the “Angiosperms353” probe kit. Neither analysis supported Solidago ulmifolia var. palmeri as a distinct taxon, and we suggest that this name should be discarded. The status of Solidago delicatula (formerly known as Solidago ulmifolia var. microphylla ) was also assessed. Both morphological and phylogenetic analyses supported the species status of S. delicatula and we suggest maintaining this species at its current rank. These results highlight the utility of the Angiosperms353 probe kit, both with herbarium tissue and at lower taxonomic levels. Indeed, this is the first study to utilize this kit to identify genetic groups within a species.more » « less
-
Abstract Oenothera sect. Calylophus is a North American group of 13 recognized taxa in the evening primrose family (Onagraceae) with an evolutionary history that may include independent origins of bee pollination, edaphic endemism, and permanent translocation heterozygosity. Like other groups that radiated relatively recently and rapidly, taxon boundaries within Oenothera sect. Calylophus have remained challenging to circumscribe. In this study, we used target enrichment, flanking noncoding regions, gene tree/species tree methods, tests for gene flow modified for target-enrichment data, and morphometric analysis to reconstruct phylogenetic hypotheses, evaluate current taxon circumscriptions, and examine character evolution in Oenothera sect. Calylophus. Because sect. Calylophus comprises a clade with a relatively restricted geographic range, we were able to extensively sample across the range of geographic, edaphic, and morphological diversity in the group. We found that the combination of exons and flanking noncoding regions led to improved support for species relationships. We reconstructed potential hybrid origins of some accessions and note that if processes such as hybridization are not taken into account, the number of inferred evolutionary transitions may be artificially inflated. We recovered strong evidence for multiple evolutionary origins of bee pollination from ancestral hawkmoth pollination, edaphic specialization on gypsum, and permanent translocation heterozygosity. This study applies newly emerging techniques alongside dense infraspecific sampling and morphological analyses to effectively reconstruct the recalcitrant history of a rapid radiation. [Gypsum endemism; Oenothera sect. Calylophus; Onagraceae; phylogenomics; pollinator shift; recent radiation; target enrichment.]more » « less
-
Charleston, Michael (Ed.)Abstract We present a 517-gene phylogenetic framework for the breadfruit genus Artocarpus (ca. 70 spp., Moraceae), making use of silica-dried leaves from recent fieldwork and herbarium specimens (some up to 106 years old) to achieve 96% taxon sampling. We explore issues relating to assembly, paralogous loci, partitions, and analysis method to reconstruct a phylogeny that is robust to variation in data and available tools. Although codon partitioning did not result in any substantial topological differences, the inclusion of flanking noncoding sequence in analyses significantly increased the resolution of gene trees. We also found that increasing the size of data sets increased convergence between analysis methods but did not reduce gene-tree conflict. We optimized the HybPiper targeted-enrichment sequence assembly pipeline for short sequences derived from degraded DNA extracted from museum specimens. Although the subgenera of Artocarpus were monophyletic, revision is required at finer scales, particularly with respect to widespread species. We expect our results to provide a basis for further studies in Artocarpus and provide guidelines for future analyses of data sets based on target enrichment data, particularly those using sequences from both fresh and museum material, counseling careful attention to the potential of off-target sequences to improve resolution. [Artocarpus; Moraceae; noncoding sequences; phylogenomics; target enrichment.]more » « less
-
Cordaux, Richard (Ed.)Abstract Crocodilians are an economically, culturally, and biologically important group. To improve researchers’ ability to study genome structure, evolution, and gene regulation in the clade, we generated a high-quality de novo genome assembly of the saltwater crocodile, Crocodylus porosus, from Illumina short read data from genomic libraries and in vitro proximity-ligation libraries. The assembled genome is 2,123.5 Mb, with N50 scaffold size of 17.7 Mb and N90 scaffold size of 3.8 Mb. We then annotated this new assembly, increasing the number of annotated genes by 74%. In total, 96% of 23,242 annotated genes were associated with a functional protein domain. Furthermore, multiple noncoding functional regions and mappable genetic markers were identified. Upon analysis and overlapping the results of branch length estimation and site selection tests for detecting potential selection, we found 16 putative genes under positive selection in crocodilians, 10 in C. porosus and 6 in Alligator mississippiensis. The annotated C. porosus genome will serve as an important platform for osmoregulatory, physiological, and sex determination studies, as well as an important reference in investigating the phylogenetic relationships of crocodilians, birds, and other tetrapods.more » « less
An official website of the United States government
